Noncommutative Symmetric Functions II: Transformations of Alphabets
نویسندگان
چکیده
Noncommutative analogues of classical operations on symmetric functions are investigated, and applied to the description of idempotents and nilpotents in descent algebras. Its is shown that any sequence of Lie idempotents (one in each descent algebra) gives rise to a complete set of indecomposable orthogonal idempotents of each descent algebra, and various deformations of the classical sequences of Lie idempotents are obtained. In particular, we obtain several q-analogues of the Eulerian idempotents and of the GarsiaReutenauer idempotents. Résumé Nous étudions des analogues non-commutatifs de tranformations classiques sur les fonctions symétriques, et nous les appliquons à la description des idempotents et des nilpotents dans les algèbres de descentes. On montre en particulier que toute suite d’idempotents de Lie (un pour chaque algèbre de descentes) permet de construire une famille complète d’idempotents orthogonaux indécomposables, et diverses déformations des suites classiques d’idempotents de Lie sont obtenues. En particulier, nous obtenons plusieurs q-analogues des idempotents eulériens et des idempotents de Garsia-Reutenauer.
منابع مشابه
MacMahon Symmetric Functions, the Partition Lattice, and Young Subgroups
A MacMahon symmetric function is a formal power series in a finite number of alphabets that is invariant under the diagonal action of the symmetric group. In this article, we show that the MacMahon symmetric functions are the generating functions for the orbits of sets of functions indexed by partitions under the diagonal action of a Young subgroup of a symmetric group. We define a MacMahon chr...
متن کاملDual bases for non commutative symmetric and quasi-symmetric functions via monoidal factorization
where O(P ) is the (multi-)set of roots of P (a polynomial) invites to consider Λj(?) as a “multiset (endo)functor” rather than a function K → K (K is a field where P splits). But, here, Λk(X) = 0 whenever |X | < k and one would like to get the universal formulas i.e. which hold true whatever the cardinality of |X |. This set of formulas is obtained as soon as the alphabet is infinite and, ther...
متن کاملThe (1 −E)-transform in combinatorial Hopf algebras
We extend to several combinatorial Hopf algebras the endomorphism of symmetric functions sending the first power-sum to zero and leaving the other ones invariant. As a “transformation of alphabets”, this is the (1 − E)-transform, where E is the “exponential alphabet,” whose elementary symmetric functions are en = 1 n! . In the case of noncommutative symmetric functions, we recover Schocker’s id...
متن کاملNoncommutative irreducible characters of the symmetric group and noncommutative Schur functions
In the Hopf algebra of symmetric functions, Sym, the basis of Schur functions is distinguished since every Schur function is isomorphic to an irreducible character of a symmetric group under the Frobenius characteristic map. In this note we show that in the Hopf algebra of noncommutative symmetric functions, NSym, of which Sym is a quotient, the recently discovered basis of noncommutative Schur...
متن کاملNoncommutative Analogs of Monomial Symmetric Functions, Cauchy Identity and Hall Scalar Product
Abstract. This paper will introduce noncommutative analogs of monomial symmetric functions and fundamental noncommutative symmetric functions. The expansion of ribbon Schur functions in both of these basis is nonnegative. With these functions at hand, one can derive a noncommutative Cauchy identity as well as study a noncommutative scalar product implied by Cauchy identity. This scalar product ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 7 شماره
صفحات -
تاریخ انتشار 1997